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Abstract
Artificial neural network (ANN) can be trained by using Backpropagation (BP) that employs gradient descent method to find the minimum of the objective function. Upon reaching a point such that objective function is smallest in a certain range, it will stop there and consider the weight values at that moment are the optimal values. Unfortunately, there may be another value much smaller at further away. Another training algorithm is the use of statistical method; here we first select a random step of weight change and adjust the weight then compare the new objective function after the weight change. If the objective function is getting better then it will retain the change. If the objective function is getting worse, then it will calculate the probability of having this weight change. It only accepts the weight change with higher probability, however the probability is also a time variable. The probability is governed by the Cauchy distribution. By this, there is a chance to escape from the local minimum, this is similar to simulated annealing and widely used in many other fields of science and engineering. However, unlike BP, statistical methods will take longer training time as they employ randomly change of weight. By conglomerating these two methods, we have the advantage of escape from local minimum in the right direction.

1. Introduction

There are two components of weight change in the conglomerated BP/Cauchy Network. One is a direct component calculated by BP algorithm [1] while the other is a random component determined by Cauchy [2] algorithm. The conglomerated  BP/Cauchy takes the advantage of finding global minimum by moving to the correct direction as BP always moves to the direction that minimize the objective function while Cauchy allows to escape from local minimum. Below can explain the idea of going to global minimum by BP/Cauchy algorithm. Assume that there is a sealed box shown as figure below. A small metal ball is stationary at the point X due to gravity. How can the small ball jump over to position Y without physically accessing the ball inside the box?
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The ball can be moved from position X to Y by shaking the box horizontally from fast to slow and stop. When the box is shaken, the ball gain kinetic energy to escape from point X and fall into Y. Then it must be slowly stopped; otherwise, the ball may jump back from point Y to X due to a sudden stop. By applying this idea, BP component is like the gravity that always has a downward force on the ball. Cauchy component is similar to the shaking force that gives the ball energy to escape from X. To simulate of stop slowly and guarantee the ball is trapped at point Y. The term, heat specific is needed to be introduced and will be discussed in section 6.

2. Backpropagation

Below is a single neuron that is the basic element of Neural Networks (NN).
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Figure 1. Single neuron with activation function-F

A neuron may have multiple inputs and a single output. The input feed into the neuron by multiplying with an adjustable value, weight. All the inputs are then added together to produce net. Then net will be passed through a function called activation function and the output is obtained and the related formulas are as follows.




i=n


net= WT X   =  ( WiXi
(1) 
where WT  is the matrix of weights and




i=1


Xi  is the input vector


out= 1 / (1+e-net)   
or  out=((net)

(2)

For a single neuron, the squared error at the output is


E(w)= ½ (d – out)2 
(3)    where d is the desired output from a training pattern.

The main task of training is trying to minimize E(w) to an acceptable low level by adjusting the weight. Total E(w) of all neurons will be the sum of E(w) of individual neuron.

The gradient of E(w) is the partial differentiation with respect to w:
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Combine (2) and (3):
E(w)= ½ (d – ((net))2

The derivative of E(w) with respect to net is:
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From (2), 
(’(net) =  e-net / (1+e-net)2  = (1+ e-net - 1 )/ (1+e-net)2



=   (1+e-net) / (1+e-net)2 – 1/ (1+e-net)2    = 1/ (1+e-net) – 1/ (1+e-net)2



= out - out2= out (1 –out )

Thus,
         ( =  (d – ((net) ) (’(net)

                          ( = out (1 – out ) ( d – out )
      (3a)
From (1), The derivative of net is:
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(W = - ((E(w)       where ( is the training rate for individual weights Wi
(Wi=  - ( (E(w) / (wi = ( ( Xi 
(4)


Wi (n+1) = Wi (n)   +  (Wi(n) (5)

Thus the new weight can be change according to equation (4) and (5). The next training pattern can then be applied to the input with the new set of weights. The whole process iterates till it reaches a point that the E(w) is at the minimum or within an acceptable level. However, by gradient descent method [3], it is quite difficult to decide whether E(w) is just one of  local minimum points or the unique global minimum which is described in details in the next section.

3. Local and Global minimum





Figure 2. Local and Global minimum


The graph of weight against E(w) should be in high dimension plane that is difficult to express in a two-dimension plane. For simplicity, two-dimension plane is use to represent the graph. Assume the initial set of weights is generated at point P. After the input pattern is applied, the output is generated and a weight change (W is obtained by formula (4). The new set of weights will produce a smaller error E(w) at position P’ continues until it reaches the local minimum point A. At that point any small change of weight will increase the error function E(w). Thereafter the network will consider it is the minimum value of E(w) and the training just stop there without knowing that there is another deeper point further away. 






Figure 3. Escape from local minimum


Assuming that the set of weights, P is at point A, when another statistical component is applied in the calculation of the new weight, the follow situation may happen; the component randomly generates a step of weight change (W that will lead to an increase of E(w). Here the network should be intelligent enough to accept or reject this weight change (W and the size of  weight change is determined by the Cauchy distribution as in Figure 4 or by equation (9). 

4. Cauchy Distribution


Figure 4. Cauchy Distribution

T(t)=T0/(1+t)  

(6)  where T0 is the initial temperature and t is time

P((W)=T(t)/[T(t)2+(W2]  
(7)

The probability P((W) obtained by using equation (8a) will compare with a random number r from a uniform distribution between zero and one. If P((W) is greater than r, the weight change (W is retained and it moves from P to P’; otherwise, return to the original weights P. Using this method, the network takes an occasional step in a adverse direction to the error function E(w). Therefore, there is a chance to escape from local minimum where any small weight change increases the error function. P’ will be guided by BP component going downward to point B after certain times of  training. At the same time, the Cauchy component still generates some random steps of  weight change in order to escape from going down. However, there is an important parameter needed to consider is the artificial temperature T. From (7), at higher temperature, T(t) the probability, P((W) for a larger (W is high. As the time past, the temperature T(t) becomes lower. The probability, P((W) for large (W is low. The chance to escape from the valley point B to valley point C is very low. Then P’ will eventually move down to point B by the BP effect as time is passing. To escape from point B, there must have a very large step of weight change. As the time runs longer, the probability of such large step of change is very low. So P’ will be trapped at point B which is the global minimum of E(w).

5. Simulated Annealing

Statistical methods [4] of training a NN are very similar to the process of annealing of metal [5]. When metal is at a temperature above its melting point, the atoms are at random motion and the probability of an atom with high energy is very high. However, it is the physical characteristic that atoms have the tendency to release the energy until it reaches the minimum energy state. As the metal is cooled down gradually, the probability for a high energy atom becomes lower and lower until it reaches to the final minimum energy state that is the global minimum. The distribution of energy state can be expressed as:

P(e) ( exp ( - e / KT)

(8)

Where P(e) is the probability of having a state with energy e



K is the Boltzmann’s constant



T is the absolute temperature in Kelvin

Boltzmann distribution [7] in NN  training is express as follows

P((W) = exp ( - (W / KT)

(8a)

Where P((W) is the probability of a change of (W in the error function



K is the Boltzmann’s constant



T is the absolute temperature in Kelvin

To emulate the annealing of metal in a Cauchy Machine [6], the distribution of energy in (8) is replaced by Cauchy distribution in (7) that has infinite variance in determining the size of weight change and reduces the training time. The minimum energy state is equivalent to the minimum error function E(w) in NN training. P((W) can be interpreted as the probability of having a  weight change of size (W in NN training. The temperature T(t) is related to the training cycle, which means that there should not have a large step of weight change if the network has been trained by many cycles already. 

6. Cauchy Training

From (7), P(W) is the cumulative probability from zero to W and can be integrated and solving for  (W, then below expression is obtained.

(W = ( {T(t) tan [P(W)]}

(9)

where ( is the learning rate for Cauchy Training 

From (9), the algorithm goes as such:

1.    Select a  random    number  from  a uniform  distribution  over the  interval  ( - (/2, (/2 ) for bounding 

       the tangent function. 

2. Substitute this number for P(W) then the size of random weight change

3. (W can be found at the current temperature T(t) with learning rate (. 

4. A new weight is obtained by adding (W into the old weight W(n+1)=W(n) + (W. 

5. A new output value is obtained by using new weight W(n+1). 

6. Calculate the error function E(W(n+1)) and compare with the previous error function E(W(n)). 

7. If E(W(n+1)) < E(W(n)) (improved), then 

retain the weight change (W

Otherwise, 

Find the probability P((W) from (8a). 

8. Select a random number r from a uniform distribution between zero and one. 

9. Compare r with P((W), 

if P((W) > r; 

keep (W

Otherwise, 

reject (W and restore back the original weight W(n). 

As the artificial temperature [9] is an important factor to determine the success of Cauchy training, the cooling rate must be selected properly; otherwise, the network may experience a very long training time or even unable to reach the global minimum. In thermal system [8], there are discrete energy levels where the change of energy with respect to change of temperature is abrupt at section B of Figure 5. It means that just a small change of temperature will lead to a great change of energy level.

                



Figure 5. Specific Heat

The term (E / (t is called the specific heat [11] of the metal. At high temperature above the melting point of the metal, all the atoms gain sufficient energy to break the bonds and the metal become melt. By then the energy will not change much even increase the temperature further (see Figure 5, section C). As the metal is cooled down gradually until it reaches the phase change where the energy level change abruptly with a small change of temperature and it is the case at section B in Figure 5. When the temperature is very low, all atoms reach to their minimum energy level and it will not change even when the metal is cooled down further. By applying this principle of specific heat to Cauchy training, there is the same case that at certain artificial temperature the error function is very sensitive to a small change of artificial temperature, therefore action should be taken to control rate of change of artificial temperature at this critical temperature. Once this critical temperature is detected by monitoring the average of the rate of change of artificial temperature with the error function, all the temperature close to the value of  this critical temperature will be traversed slowly  to  make  sure P’ in  Figure 3  will  converge  to  the  global  minimum  point B.

7. Conglomerated BP/Cauchy Network

The conglomerated BP/Cauchy Network has two components of weight change and can be expressed as follows.

Wi (n+1) = Wi (n)   +  (Wibp(n)  + (Wic(n)    
(10)

The second term at right hand side, (Wibp is the weight change determined by BP while the third one (Wic(n)  is determined by Cauchy Machine. (Wibp and (Wic(n)  can be found by using equation (4) and (9) respectively. Rewrite equation (10) as follows.

Wi (n+1) = Wi (n)   +  ( ( Xi
+  (1- () {T(t) tan [P(W)]}  
(11)

where ( is the coefficient controlling the magnitude of the two components. 

If ( is zero, (11) becomes a pure Cauchy Machine with training rate equals to one and if ( is one, (11) becomes a BP network with training rate equals to one. As the third term is generated by random method and it may sometimes be very large that leads to a large weight appear on the next training. From equation (1), large weights will produce large value of net and it will push the output to the saturated region where out has a value almost equals to one (see equation (2)). From equation (3) if out approaches to one, ( will become very small or near zero and the weight change from (4) will be small enough to be ignored when there is no more weight change and the error function will never reach to its minimum. The network will keep on training endlessly. This is so-called network paralysis. There are some methods to overcome this problem. One of them is to monitor the output value. If out is approaching to its limiting value, say 0.9993958, all the weights input to that neuron have to pass through a squashing function of reducing their magnitude. Squashing has the feature of affecting large value and of preserving small value (see Figure 6).

Figure 6. Squashing function to reduce weight



Wnew= -5 + 10 / [1+exp(-W/5)]
(12)

All weights feeding to the saturated neurons will pass through this function and new reduced weights within the range –5 to +5 are obtained. Applying these new weights for the next training will pull those neurons out of saturation. However, this function may disturb the training process and it should be little because this function has little effect on small weights. 

8. Conclusion

The difficulties encountered in the training are the determination of training rate [10], artificial temperature, rate of change of error function in the decision of specific heat and the function of reducing weight of saturated neuron. There are still many other methods to research and for evaluation in this area, for example, we may control the range of P(W) in equation (11) in order to remove the chance getting large step of weight change. 
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